
Generalized Flow-Graph Programming Using
Template Task-Graphs: Initial Implementation and

Assessment
Joseph Schuchart

Innovative Computing Laboratory
The University of Tennessee

Knoxville, TN, USA
schuchart@icl.utk.edu

Poornima Nookala
Institute for Advanced Computational Science

Stony Brook University
Stony Brook, NY, USA

poornimavinaya.nookala@stonybrook.edu

Mohammad Mahdi Javanmard
Meta Platforms, Inc
New York, NY, USA
mjavanmard@fb.com

Thomas Herault
Innovative Computing Laboratory

The University of Tennessee
Knoxville, TN, USA
herault@icl.utk.edu

Edward F. Valeev
Department of Chemistry

Virginia Polytechnic Institute and State University
Blacksburg, VA, USA

valeev76@vt.edu

George Bosilca
Innovative Computing Laboratory

The University of Tennessee
Knoxville, TN, USA
bosilca@icl.utk.edu

Robert J. Harrison
Institute for Advanced Computational Science

Stony Brook University
Stony Brook, NY, USA

robert.harrison@stonybrook.edu

Abstract—We present and evaluate TTG, a novel programming
model and its C++ implementation that by marrying the ideas
of control and data flowgraph programming supports compact
specification and efficient distributed execution of dynamic and
irregular applications. Programming interfaces that support task-
based execution often only support shared memory parallel
environments; a few support distributed memory environments,
either by discovering the entire DAG of tasks on all processes,
or by introducing explicit communications. The first approach
limits scalability, while the second increases the complexity of
programming. We demonstrate how TTG can address these issues
without sacrificing scalability or programmability by providing
higher-level abstractions than conventionally provided by task-
centric programming systems, without impeding the ability of
these runtimes to manage task creation and execution as well
as data and resource management efficiently. TTG supports
distributed memory execution over 2 different task runtimes,
PaRSEC and MADNESS. Performance of four paradigmatic ap-
plications (in graph analytics, dense and block-sparse linear
algebra, and numerical integrodifferential calculus) with various
degrees of irregularity implemented in TTG is illustrated on large
distributed-memory platforms and compared to the state-of-the-
art implementations.

Index Terms—Flowgraph programming, Dataflow graph, Tem-
plate Task Graph, PaRSEC, MADNESS

I. INTRODUCTION

This work is inspired by the belief that flowgraph program-
ming (FGP) is a superior match for (1) high-performance
parallel programming of modern computers with complex
(distributed/heterogeneous) memory hierarchies and a large
number of, potentially heterogeneous, compute resources,

(2) irregular (scientific) applications characterized by data-
dependent operation streams, and (3) combinations thereof.
This belief is reflected by many efforts employing data- and
control/work-flow programming to simplify parallel program-
ming as an alternative to traditional bulk-synchronous models
(see Section IV). The advantages of FGP are due to several
traits: (1) specification of only essential dependencies between
operations maximizes exploitable concurrency and opportu-
nities for hiding latency by overlapping data motion and
computation, (2) making the data part of the flow a dataflow
reduces the need for synchronization, eliminates scheduling
delays, and makes operations easier to reuse by eliminating
nonessential side effects, and (3) by raising the level of
abstraction, programs (often) become easier to write, easier
to transform (thereby supporting the development of domain-
specific languages), and easier to port. While these advantages
are not unique to FGP, achieving them via more conventional
means typically involves significant programming costs due
to the low-level (and sometimes explicit) management of
asynchronous execution. Thus FGP is uniquely positioned
to address the tension between programmer productivity and
the programming challenges posed by the ever-increasing
complexity of hardware and applications.

Recently, a novel flowgraph-based programming model,
Template Task Graph (TTG), and its implementation as a C++
library was introduced in [8]. The objective of TTG is to enable
high-level composition and efficient execution of broad classes
of irregular algorithms on distributed-memory heterogeneous

clusters. Irregular algorithms, characterized by the lack of
natural load balance in data and computation and dynamic
(typically, data-dependent) operation flow, are of particular
importance to modern data science and physical simulation
applications, which trade uniform data structures (uniform
meshes, dense tensors) for irregular data-sparse counterparts
(adaptively-refined meshes, block- and rank-sparse tensors).
While irregular algorithms are the natural keystone target for
TTG, regular algorithms at scale pose similar challenges due
to nonuniformity of the hardware (heterogeneous execution
units, nonuniform thermal environment) and the execution
space (e.g., when multiple dissimilar regular algorithms are
executed at once).

The main contributions of this paper are:
• introduction of several new features in TTG to enhance

the ease of composition and increase execution efficiency;
• the evaluation of their implementation over four paradig-

matic regular (dense linear algebra, graph analytics) and
irregular (block-sparse linear algebra, adaptive spectral
element calculus) applications, and the comparison of the
TTG implementation of these applications with state of
the art implementation in other programming paradigms.

The rest of this paper is organized as follows: in Section II,
we present the TTG language, its driving concepts, and a
discussion of its implementation over PaRSEC and MADNESS;
in Section III, we introduce and evaluate the different appli-
cations. We discuss the related work in Section IV before we
conclude.

II. TEMPLATE TASK GRAPH

A detailed description of TTG can be found in [8]. For the
purpose of this paper, we will provide a brief description of
the components in TTG, their interaction, and some of the
implementation details.

TTG represents an algorithm as a flowgraph (template task-
graph, TTG) composed of one or more nodes (template tasks)
equipped with ordered sets of input and output terminals con-
nected by directed edges. In the current C++ implementation
of TTG, template tasks, terminals, and edges are explicitly and
strongly typed. Edges encode all possible flows of messages.
Each message consists of a task ID and data; this idea builds
on the concept of the Parameterized Task Graph (PTG) [15].
The task ID represents the task (instance of a task template)
for which the data is intended. Thus, messages in the TTG
model generally contain both a control part (task ID) and
data part, allowing to marry the control-flow and data-flow
paradigms. Pure control flow can be implemented by omitting
the data part, i.e., by using the null type (void) to represent the
data part of the message. Pure dataflow can be implemented
analogously by using the null type to represent the task ID.

Once every input terminal of a given template task has
received one message with the same value of task ID, a task
is created with the data parts of the corresponding messages.
Tasks define a task body, which is a C++ method that will
be executed by the runtime system. TTG does not constrain
the task bodies in any way (i.e., the tasks can be arbitrary,

not necessarily pure, functions) but any side effects may
require additional synchronization to avoid data races. During
its execution, the task may deliver new messages to zero or
more output terminals. Introducing the data dependence into
the control flow (i.e., by deciding whether a particular output
terminal will receive a message or not, or by making the task
IDs of the outgoing messages dependent on the data contents
of the input messages) allows to implement general data-
dependent task flows in TTG seamlessly. Thus, the message
flow through a TTG generates a set of tasks representing an
application. Each TTG can be viewed as encoding a set of
possible directed acyclic graphs (DAGs) of tasks with the
actual DAG executed being dependent on the data flowing
through it.

To illustrate these concepts, we consider the well-known
algorithm for (non-pivoted) Cholesky factorization of a dense
tiled matrix used in the standard distributed-memory linear
algebra package ScaLAPACK [14] and whose TTG implemen-
tation will be assessed in Section III-B. Figure 1 illustrates
its template task graph. The algorithm consists of 4 types of
tasks: POTRF (Cholesky factorization of diagonal tiles), GEMM
(generalized matrix multiply), SYRK (symmetric rank-k matrix
update), and TRSM (triangular linear system solver). Each task
type is represented by a node in TTG, with two additional
nodes representing reading of the input data (INITIATOR) and
writing the output data (result).

Listing 1 illustrates how the TTG is composed by connect-
ing inputs and outputs of each task template to the edges
(represented in C++ by ttg::Edge). Note that each output
terminal may be attached to one or more input terminals. Each
task template is typically composed from a free or lambda
function by calling ttg::make_tt (Lines 9 and 41). Listing 1
illustrates also how the TRSM task template is implemented.
The lambda (or free function) implementing a task body
receives as its arguments the task ID (if non-void), input data
(if non-void), and the tuple of output terminals (ttg::Out;
Lines 14–20). The function body performs arbitrary computa-
tion on the data and, if needed, “sends” the data to the output
terminals via ttg::send (if intended to be an input for a
single task) or ttg::broadcast (if intended to be an input
for multiple tasks; Lines 37–39). Since the edges, input, and
output terminals are all explicitly parametrized by the type
of data they transport the type safety of TTG’s edges and
task templates is checked at compile time. Note that the graph
built by connecting the nodes that represent task types via
edges includes cycles and thus does not represent directly
the DAG of tasks. It is during the execution, when tasks
are instantiated with their task IDs, that the DAG of task is
constructed, distributed across processes, by each task instance
that discovers a new task instance.

The task ID of a given task does not have to match, or even
be of the same type as, the task IDs of its output terminals.
For example, the TRSM task IDs are represented by a 2-tuple
(Int2) and produce data that will be used to create tasks
with IDs represented by 3-tuples (Int3). Immutable data may
be shared between tasks while tasks mutating inputs receive

1 /* Edges with 1-tuple task IDs */
2 ttg::Edge<Int1, Tile> init_potrf;
3 /* Edges with 2-tuple task IDs */
4 ttg::Edge<Int2, Tile> potrf_trsm, trsm_result,
5 trsm_syrk, gemm_trsm;
6 /* Edges with 3-tuple task IDs, encodes the iteration K */
7 ttg::Edge<Int3, Tile> trsm_gemm_row, trsm_gemm_col;
8 auto POTRFOp =
9 ttg::make_tt(potrf_fn /* not shown here */,

10 /* input edges */ ttg::edges(init_potrf),
11 /* output edges */
12 ttg::edges(potrf_results,
13 potrf_trsm));
14 auto trsm_fn =
15 [](const Int2& id, const Tile<T>& tile_kk,
16 Tile<T>&& tile_mk,
17 std::tuple<ttg::Out<Int2, Tile<T>>,
18 ttg::Out<Int2, Tile<T>>,
19 ttg::Out<Int3, Tile<T>>,
20 ttg::Out<Int3, Tile<T>>>& out){
21 const auto [I, J] = id;
22 const auto K = J;
23 /* call LAPACK library’s tsrm function */
24 TRSM(tile_kk, tile_mk);
25 std::vector<Int3> row_ids, col_ids;
26 /* ids for gemms row I */
27 for (int n = J+1; n < I; ++n)
28 row_ids.push_back(Int3(I, n, K));
29 /* ids for gemms column I */
30 for (int m = I+1; m < NROWS; ++m)
31 col_ids.push_back(Int3(m, I, K));
32 /* broadcast the result to 4 output terminals:
33 * 0: to final output task writing back the tile;
34 * 1: to the SYRK kernel;
35 * 2: to the gemm tasks on in row I;
36 * 3: to the gemm tasks in column K; */
37 ttg::broadcast<0, 1, 2, 3>(
38 std::make_tuple(id, Int2(I, K), row_ids, col_ids),
39 std::move(tile_mk), out);
40 };
41 auto TRSMOp = ttg::make_tt(trsm_fn,
42 /* input edges */
43 ttg::edges(potrf_trsm, gemm_trsm),
44 /* output edges */
45 ttg::edges(trsm_result, trsm_syrk,
46 trsm_gemm_row,
47 trsm_gemm_col));

Listing 1: Select elements of the C++ code specifying the
TTG implementation of dense tiled Cholesky factorization in
Figure 1.

private copies, which may be passed on to other operations.
Thus, applications need not be concerned with protecting
access to data under TTG’s control. The safety of side-effects
of tasks on data outside the control of TTG is under the
purview of the application.

Once a task template receives all inputs needed for a given
task ID the task is scheduled for execution. The process on
which a given task will be executed is specified by a user-
defined function mapping task IDs to process ranks. Note that
creation and execution of tasks is entirely abstracted out in
TTG. Thus, TTG can be viewed as a higher-level abstraction
for a low-level task runtime. Current implementation of TTG
can use one of two task runtimes for distributed task execution:
PaRSEC and MADNESS. Section II-D will discuss the relevant
implementation details.

In this work the following features were added to TTG:

• the ability to assign priorities to tasks by supplying each
task template with a priority map mapping a task ID to

INITIATOR

output output output output

syrk_potrf

POTRF

potrf_result potrf_trsm

potrf_trsm trsm_trsm

TRSM

trsm_result trsm_syrk trsm_gemm_row trsm_gemm_col

trsm_syrk syrk_syrk

SYRK

syrk_potrf syrk_syrk

trsm_gemm_row trsm_gemm_col gemm_gemm

GEMM

gemm_trsm gemm_gemm

result

Final Output

Fig. 1: Template task-graph of the tiled Cholesky factorization.
The INITIATOR operation is responsible for providing input
to tasks that have no direct predecessor in the algorithm.

a specific task priority that is provided to the underlying
runtime system;

• optimized implementation of ttg::broadcast, which
appears as a common use case, e.g. in the TRSM task
template in Listing 1;

• streaming terminals that can receive not just a single mes-
sage but a (bounded or unbounded) stream of messages;

• support for C++ data types serializable via general-
purpose serialization frameworks, as well as support for
RMA data transfers where supported by the runtime;

• an improved implementation of TTG over two runtimes,
focusing on performance.

Several of these features are discussed in detail below.

A. Sending and Broadcasting

TTG supports several ways to send data out of tasks:
• to a single output terminal accompanied by a single task

ID (ttg::send; see Figure 2a);
• to a single output terminal accompanied by several task

IDs (ttg::broadcast; see Figure 2b);
• to multiple output terminals, each accompanied by one

or more task IDs (ttg::broadcast; see Figure 2c).
The latter is used in the implementation of the TRSM task tem-
plate shown in Listing 1 (Lines 37–39). The data broadcasting
was introduced to optimize data transfers between processes
and avoid repeated transfers of the same data.

Note that by default send and broadcast both copy the
argument data; this allows subsequent mutation of the data
for sending it to other terminals. Passing data by constant
reference indicates that the copying can be bypassed, if
possible (e.g., if the lifetime of the object is already tracked
by the runtime; see Section II-D). To indicate that the data
is no longer going to be used in the task template body the
data can be passed by rvalue reference (via std::move); for
types with efficient rvalue copies this allows to implement
efficient (potentially, zero-copy within memory space) data
flow through the graph. These customization mechanisms are
illustrated in Listing 2.

k1

(a) Send data
accompanied by
task ID k1 to 1
output terminal

k1 k2 k3

(b) Broadcasting data
accompanied by task
IDs {k1, k2, k3} to 1
output terminal

k1
k2 n1

n2 m1

(c) Broadcasting data ac-
companied by task IDs
{k1, k2}, {n1, n2}, {m1}
to 3 output terminals

Fig. 2: TTG send and broadcast operations.

void taskfn(const TaskID& task_id, const MatrixTile& input,
tuple<Out<TaskID, MatrixTile>,

Out<TaskID, MatrixTile>,
Out<TaskID, MatrixTile>>& out) {

MatrixTile output = compute_output_tile(input);
send<0>(task_id,output,out);//new copy required
send<1>(task_id,move(output),out);//no copy due to move
send<2>(task_id,input,out);//no copy as input is const

}

Listing 2: Examples of using const-qualified types and
std::move to signal immutability of objects provided to
ttg:send.

B. Streaming Terminals

The original design of TTG mandated that each input
terminal can receive only a single message for a given task
ID. For some types of algorithms this restriction produces
task templates with large numbers of input terminals. For
example, a 1D Jacobi would only require 3 input terminals:
the state of the task at the previous iteration as well as the
state of the left and right neighbors. However, a 2D Jacobi
requires 5 to 9 inputs (depending if neighbors on the diagonal
need to be considered), and a 3D Jacobi quickly becomes
un-manageable through explicit input terminals defined as
independent variables in the user code. In this work, this
restriction was lifted by making all input terminals capable
of receiving a stream of messages for every task ID. The
input messages are reduced (e.g., concatenated) using a user-
provided function U⊗T → U reducing a pair of values into a
single value. Each incoming message is processed in a light-
weight manner (i.e., without spawning a task) until either the
prescribed number of messages has been received or the input
terminal is programmatically “finalized” for the given task ID
(see Figure 3). An example for using streaming terminals will
be provided later in Section III-E.

C. Data serialization

Execution of TTG programs involving dataflow requires
support for serialization of user data types, both for data
between memory spaces (such as between host memories
of different processes, or between host and device mem-
ory for a single process). The original implementation of
TTG was limited to serialization of data types that were
(1) trivially (bitwise) copyable, or (2) were serializable by
the MADNESS runtime-provided serialization. In this work,

Streaming
Terminal

U

T

UTTA T TTBU

*{N-1}

Fig. 3: TTG streaming terminal with input T, output U, and
a size of N. The reduction operation of the terminal will be
called N − 1 times on input from TTA before before a task of
TTB will be eligible for execution.

TTG was extended to support data types serializable via
the widely-available Boost.Serialization1 library. Since stock
Boost serialization archives provide a number of default fea-
tures intended for archival purposes (type versioning, pointer
tracking, etc.), they are ill-suited for high-performance appli-
cations like TTG. Therefore, support for Boost.Serialization-
compatible types in TTG uses custom archives optimized
for high-performance serialization into in-memory buffers.
TTG also provides type traits that detect serializability of a
given type via Boost.Serialization, MADNESS, or by memcpy,
and makes the optimal choice of serialization protocol. Thus
several mechanisms of serialization are provided for a given
flowgraph.

Unfortunately, the default serialization protocols that TTG
can exploit necessarily involve multiple copies (object to/from
serialization buffer to/from MPI message buffer, etc.). To in-
crease the efficiency of data flow, a split-metadata (splitmd)
mechanism was implemented in TTG in the course of this
work. Unlike Boost.Serialization and its sibling MADNESS
serialization protocols, in which the entire object is serialized
and transferred as a whole, splitmd is a 2-stage protocol
(see Figure 4). First, the object’s metadata (data fields that are
sufficient for allocating an object’s representation in memory)
are serialized and transferred. In addition, the object’s contigu-
ous memory is registered with the communication library. The
metadata and registration information combined are typically
sufficiently small to utilize the eager protocol commonly
found in MPI implementations. On the receiving process, the
metadata is used to allocate a new object. In the second phase,
the received registration information is used to fetch the data
into the contiguous memory of the newly created object using
remote memory access (RMA). The RMA capability to TTG
is typically provided by underlying communication libraries
such as LCI [16], UCX [38], or GASnet [7]. It can also be
emulated using MPI point-to-point operations or use features
proposed for MPI RMA [35]. Once the transfer is complete,
the sender is notified to release the source object.

Since the splitmd serialization fundamentally requires
allocated-but-not-yet-initialized to be a valid state, the
splitmd is intrusive (i.e., typically requires modification of
the type definition and/or implementation). Type traits are used
to test at compile time whether a given type supports the
splitmd protocol. Serialization protocols chosen by TTG are

1https://www.boost.org/doc/libs/1 77 0/libs/serialization/doc/index.html

https://www.boost.org/doc/libs/1_77_0/libs/serialization/doc/index.html

Vector

Metadata

Vector

Metadata

create_from_metadata()

get_data()

 template<>
 struct SplitMetadataDescriptor<MatrixTile> {

 auto get_metadata(const MatrixTile& t) {
 return t.metadata();
 }

 auto get_data(MatrixTile& t) {
 return std::array<iovec, 1>({t.size(),
 t.data()});
 }

 auto create_from_metadata(metadata_t& meta) {
 return MatrixTile(meta);
 }
 };

get_metadata()

Fig. 4: Schematic depiction of TTG’s serialization format
for objects containing contiguous data segments (left) and an
example implementation for a MatrixTile (right).

selected in this order of preference: splitmd (if supported
by the TTG backend; see Section II-D), trivial (memcpy),
Boost.Serialization (if the Boost library is available), madness
(if the MADNESS library is available).

D. TTG Execution Backends

As mentioned before, TTG as a programming model is a
higher-level abstraction over the underlying low-level task run-
time. The current C++ implementation of TTG can in principle
create tasks using many available task runtimes, e.g., standard
C++ (std::async) or OpenMP. In practice, however, for
optimal resource utilization the implementation details of the
task runtime matter greatly even in a shared-memory (host-
only) setting. For distributed memory operation, additional
features are needed to support seamless data transfers, parallel
primitives (collective operations, global termination detection),
and resource management; extra support is needed for hetero-
geneous execution and memory spaces within the node.

The implementation details of TTG are collectively referred
to as a TTG backend. A backend provides the ability to
schedule and execute tasks as well as resource management
and coordination for communication and computation in a dis-
tributed setting. There are currently two backends supporting
the execution of TTG applications on shared- and distributed-
memory platforms: MADNESS or PaRSEC. The MADNESS
backend served as an early proof of concept for TTG, with
the PaRSEC backend targeted to serve as the main vehicle
for efficient performance-portable operation on distributed
and heterogeneous platforms. The feature set required to
implement TTG is not unique to these two backends and is
available in other runtimes (e.g., UPC++), thus implementation
of additional backends for TTG should be straightforward.

MADNESS parallel runtime: started as the foundation
for fast integrodifferential numerical calculus with guaranteed
precision in up to 6 dimensions, with applications in chemistry
and nuclear physics, among others [21]. By now, however,
the MADNESS parallel runtime has evolved into a powerful
general-purpose environment for task-based composition of a
wide range of parallel algorithms on distributed data structures
as varied as irregular trees in MADNESS and the sparse tensors
in the TiledArray framework [13]. The central elements of the
parallel runtime are a) futures for hiding latency and managing
dependencies, b) global namespaces with one-sided access, c)

remote method invocation in objects in global namespaces,
and d) dynamic load balancing and data redistribution. An
SPMD model is provided with a single logical main thread
per process, a thread pool to execute tasks, and a thread
dedicated to serving remote active messages. MADNESS can
be configured to use its own thread pool implementation, or to
use Intel TBB or PaRSEC. An application in the MADNESS
runtime can be viewed as a dynamically constructed DAG,
with futures as edges.

PaRSEC [9]: is a task-based runtime for distributed
heterogeneous architectures, capable of dynamically unfold-
ing a concise description of a graph of tasks on a set of
resources and satisfying all data dependencies by shepherding
data between memory spaces (including between nodes) and
scheduling tasks on heterogeneous resources. Compared to
many runtime systems that support a single way to represent
or discover a DAG of tasks, PaRSEC is designed to support
many Domain Specific Languages (DSLs) or Application
Programming Interfaces (APIs). This makes PaRSEC a tool
of choice to study different APIs or DSLs for distributed task-
based programming.

Multiple components constitute the PaRSEC runtime: pro-
gramming interfaces (DSLs/APIs), schedulers, communication
engines and data interfaces. The runtime uses a modular
component architecture (MCA), allowing different modules or
instances to be dynamically selected during runtime, providing
a varied set of capabilities to different instances of the runtime
(such as scheduling policies, or support for heterogeneity). A
well-defined API for these modules transforms them into black
boxes, and allows interested developers or users to implement
their own, application specific, policies. The different DSLs
share the same runtime, data representation, communication
engine, scheduler, cohabiting over the same set of hybrid
resources and seamlessly inter-operating in the context of the
same application.

Several optimizations were introduced in this work specifi-
cally for the PaRSEC backend, including improvements to the
PaRSEC runtime itself: a flexible new interface of the PaRSEC
runtime system to efficiently organize communication between
processes, the use of active messages for control signals, the
use of a one-sided communication for asynchronous transfers
of data, and the use of completion callbacks for notifications.
The splitmd serialization protocol is also only available when
using the PaRSEC backend. Most importantly, the PaRSEC
backend now owns the data flowing through the TTG graph
and is in charge of managing its life-cycle and marshaling it
across memory space boundaries, such as for avoiding copying
when data is passed to ttg:send or ttg::broadcast by
const reference.

These additions target improving the efficiency and scal-
ability of the PaRSEC backend, but have no impact on the
correctness and capability of TTG, both current TTG backends
support the full set of TTG features. In fact, all TTG programs
developed in this work are backend independent, with the
backend selection performed at compile time by setting a
single preprocessor macro. Since the backend can sometimes

TABLE I: Software configurations

Software Hawk Seawulf

MPI Open MPI 4.1.1, UCX 1.10.0 Intel MPI 20.0.2
Compiler GCC 10.2.0 GCC 10.2.0
HWLOC 1.11.9 1.11.12
MKL 19.1.0 20.0.2

have substantial impact on the performance, where warranted
the performance will be demonstrated for both backends.

III. BENCHMARKS

A set of paradigmatic algorithms, with varying degree of
irregularity in their data and computation traits, was imple-
mented using C++ implementation of the TTG programming
model. The performance was evaluated against reference im-
plementations using traditional programming models or, where
available, against existing state-of-the-art implementations.

A. Test Setup

We performed our evaluation on two systems. The Hawk
system is a Hewlett Packard Enterprise Apollo2 installed at
the High Performance Computing Center Stuttgart (HLRS)
in Stuttgart, Germany, consisting of 5,632 dual-socket 64-
core AMD EPYC 7742 nodes equipped with 256 GB main
memory and connected through a Mellanox Infiniband HDR
200 fabric. The Seawulf system is a Linux cluster installed
at StonyBrook University3 and consists of a variety of nodes
equipped with Intel CPUs. In particular, we used up to 32
dual-socket Intel 20-core Xeon Gold 6148 CPUs with 192 GB
main memory connected using a Mellanox InfiniBand FDR
network. The used software configuration for both systems
are listed in Table I.

B. Dense Cholesky Factorization

We implemented the dense tiled Cholesky factorization
(POTRF) [12] in TTG and compared its performance against
state-of-the-art implementations SLATE [18], Chameleon4

(running on top of StarPU [5]), ScaLAPACK [14], and
DPLASMA [10] (running on top of PaRSEC). The templated
task-graph of the tiled POTRF algorithm is depicted in Fig-
ure 1. To demonstrate the competitive performance TTG can
deliver, we ran two separate scaling experiments: i) weak
scaling across a number of nodes; and ii) problem scaling
on a fixed number of nodes. In both cases, we used 60 worker
threads pinned to a single NUMA domain per node to avoid
interference and to work around issues with process binding
observed with some of the reference implementations, leaving
4 cores for the operating system and communication threads.

2https://www.hlrs.de/systems/hpe-apollo-hawk/
3https://it.stonybrook.edu/help/kb/understanding-seawulf
4https://project.inria.fr/chameleon/

1/60 4/240 36/2160 64/3840 256/15360
Number of Nodes / Number of Cores

100

101

102

Pe
rfo

rm
an

ce
 [T

F/
s]

Chameleon
DPLASMA
ScaLAPACK
SLATE
TTG (PaRSEC)

Fig. 5: Weak-scaling of POTRF on Hawk. Each node holds a
submatrix of size 30k2. The tile size is 5122.

50000 100000 150000 200000 250000 300000
Matrix size

0

20000

40000

60000

80000

100000

Pe
rfo

rm
an

ce
 [G

F/
s]

DGEMM Peak
Chameleon
DPLASMA
ScaLAPACK
SLATE
TTG (PaRSEC)

Fig. 6: Scaling the matrix size on 64 nodes performing tiled
Cholesky factorization with a tile size of 5122 on Hawk.

1) Node-scaling: Figure 5 shows a clear separation between
two sets of scalability trends. ScaLAPACK and SLATE steadily
continue to grow their performance but at a slower pace
compared with the others, a behavior that can be explained
by the sequentiality induced by the compute flow in the
Cholesky algorithm without lookahead implemented in these
two libraries. On the other side, all task-based versions ben-
efit from the lack of synchronizations of the tile Cholesky
implementation, and see a significant growth in performance
with the increase in the number of compute resources in this
weak-scale setup. Chameleon slightly trails behind the TTG
and DPLASMA despite having the same potential parallelism
due to the same tiled Cholesky implementation. A possible
explanation is a more efficient communication substrate in
PaRSEC, including the collective communication, but a more
in-depth analysis would be necessary to confirm this.

2) Problem-scaling: Figure 6 shows a similar outcome, two
well-separated groups, both asymptotically reaching their peak
for this number of processes. Again, the task-based approaches
benefit from the lack of synchronizations, and thus a large
potential parallelism that once efficiently mapped into the
compute resources lead to a more efficient execution and to
reaching the practical peak for smaller matrix sizes.

C. Floyd-Warshall All-Pairs-Shortest Path (FW-APSP)

The FW-APSP algorithm finds the shortest path between
every pair of vertices in a directed graph. It is among the most
fundamental graph algorithms and has several applications in

https://www.hlrs.de/systems/hpe-apollo-hawk/
https://it.stonybrook.edu/help/kb/understanding-seawulf
https://project.inria.fr/chameleon/

Iteration k = 0

A

C

C

C

B

D

D

B

D

D

D

B

D

D

D

D A

C

D D

Iteration k = 1

B B

CD

D

D DD

B

C

D D

Fig. 7: Flow of data among different kernels in blocked FW-
APSP algorithm.

computer networks, logic programming, optimizing compilers,
model-checking, social media, transportation, among others.

Prior work proposed different optimization techniques to
improve the performance of the algorithm. Venkataraman et
al. proposed a single-level tiled algorithm to improve the I/O
complexity [40]. Javanmard et al. extended it to a recursive
multi-level tiled algorithm to run efficiently on distributed-
memory machines as well as GPUs [25], [27]. In the recursive
multi-level tiled algorithm, the first level of tiling is used to
distribute the underlying adjacency matrix among processes
and further parallelism and I/O efficiency were achieved by
recursive sub-tiling. Nookala et al. [31] implemented a data-
flow version of the standard two-way recursive divide-and-
conquer FW-APSP algorithm in Intel CnC [11] and compared
the performance with a fork-join implementation in OpenMP.
They showed that a data-flow implementation outperforms its
fork-join counter-part when, due to artificial dependencies, the
fork-join implementation fails to generate enough subtasks
to keep all processors busy and does not have enough data
locality to compensate for the lost performance.

As shown in Figure 7, the parametric recursive algorithm
has four kernels (A, B, C, and D) that each compute the
minimum shortest path within the input tiles of the adjacency
matrix. Kernel A is only applied to the tiles on the diagonal,
followed by kernels B and C applied to the respective row
and column. The results of kernels B and C are used as input
for kernel D, which is applied to the panels on both sides of
the current row and column. In the multi-level MPI+OpenMP
implementation, the exchange of super-tiles along rows and
columns is performed using MPI broadcast operations while
the application of the operations to the sub-tiles is done using
OpenMP tasks. In TTG, on the other hand, a single-level
2D block-cyclic distribution of tiles is used and tiles are
broadcast to all successor operations independent of other tiles.
The MPI+OpenMP implementation of [27] puts significant
constraints on the available process configurations by requiring
process numbers that are both square and multiples of 2. This
constraint was later discussed in [25], [26] and virtual padding
is mentioned as a potential solution to this constraint but the
distributed-memory implementation was not discussed. While
the TTG implementation of the benchmark does not have these
constraints, in the interest of comparability we decided to run
the same configuration for both MPI+OpenMP and TTG.

Figure 8 depicts the strong-scaling behavior of both the
TTG and MPI+OpenMP implementation on a 32k matrix with
different block sizes. The data shows that the TTG implemen-

Fig. 8: Strong scaling of the Floyd-Warshall benchmark using
TTG and MPI+OpenMP on Hawk using 16 processes per node,
8 threads each (block sizes in square brackets).

Fig. 9: Strong scaling of the Floyd-Warshall benchmark using
TTG and MPI+OpenMP on SeaWulf using 2 processes per
node, 20 threads each (block sizes in square brackets).

tation clearly outperforms the MPI+OpenMP implementation
up to 16 nodes by a factor of almost 2, with TTG running on
top of PaRSEC further scaling to 64 nodes for block sizes of
64 and 128. TTG running on top of MADNESS benefits from
larger tile sizes, presumably due to the lower number of tiles
to communicate, but is limited in its scalability.

For TTG running on top of PaRSEC, smaller block sizes lead
to better scalability. At 256 nodes, however, TTG using blocks
of size 128 reaches its scalability limit: (32k128) = 256 blocks in
each dimension distributed across

√
256× 16 = 64 processes

per dimension results in 256
64 = 4 blocks per process, less than

the number of threads. Unfortunately, an issue in Open MPI
prevented us from running with block sizes of 64 with TTG
on top of PaRSEC on 256 nodes. However, we expect TTG to
further scale to 256 nodes once this issue is resolved.

Figure 9 shows the strong-scaling behavior on SeaWulf
using a 32K matrix with block sizes 128 and 256. TTG imple-
mentations outperform the MPI+OpenMP implementation on
up to 32 nodes by a factor of 4. TTG with MADNESS performs
similar to the PaRSEC version with 256 tile size as compared
to 128 tile size due to less communication with larger tiles.
The running time for benchmarks with 64 tile size exceeded
the time-limit and hence are not included in the plot.

start_ctl

ReadSpA

A_mn

start_ctl

ReadSpB

B_mn
A_mn

BcastA

A_rik

B_mn

BcastB

B_rkj

A_rik

LStoreA

A_comm_ctl A_riks

B_rkj

LStoreB

B_rkjs B_comm_ctl

A_riks ctl_riks

LBcastA

A_riks A_ijk

B_rkjs ctl_rkjs

LBcastB

B_ijk B_rkjs

A_ijk B_ijk C_ijk

MultiplyAdd

C_ij C_ijk ctl_rs

ctl_rs

Coordinator

A_ctl_riks B_ctl_rkjs ctl_rs

C_ij

WriteSpC

Fig. 10: Template task-graph of the block-sparse matrix-matrix
multiply algorithm.

D. Block-Sparse GEMM

As a first irregular application, we considered a block-
sparse matrix-matrix multiplication (bspmm). The arguments
are matrices tiled in blocks of irregular dimensions, with a
significant subset of blocks empty. The bspmm algorithm we
implemented follows a 2D SUMMA strategy [39], adapted to
the task-based representation, similarly to [23].

The resulting TTG is depicted in Figure 10. Tasks of type
ReadSpA/B load the tiles from memory and inject them into
the flowgraph. The tiles are broadcast to remote nodes via
the tasks of type BcastA/B, and stored on each node in the
tasks of type LStoreA/B, to avoid additional communications.
There is a control-flow feedback loop from LStoreA/B to the
ReadSpA/B to control how many of these communications can
happen in parallel. Then, tiles flow to the main computational
kernel in tasks of type MultiplyAdd through local broadcast
tasks of type LBcastA/B. There is another feedback control
loop through tasks of type Coordinator that wait until
multiple MultiplyAdd tasks are completed before it allows
tasks of type LBcastA/B to continue broadcasting local work.
This reduces the choices of the scheduler and forces it to focus
on a subset of GEMM tasks that work on the same subset of
data. Both feedback loops are implemented using streaming
terminals discussed in Section II-B.

Compared to the previous applications, BSPMM is irregular
and requires dynamic decisions: the DAG of tasks that must
be executed depends on each input problem, and there is no
universal data placement and scheduling strategy that can guar-
antee optimal performance without adapting these decisions to
each input problem. The task-based approach of TTG delegates
the dynamic scheduling decision to the underlying runtime
system, creating some adaptability. Data placement remains
heuristical, based on a 2D block cyclic distribution to balance
the load, and the additional control flow is here to manage the
high degree of parallelism of the problem.

To evaluate the performance of the bspmm implementation,
we used the matrix representation of the Yukawa integral
operator (exp(−r12/5)/r12) in the cc-pVDZ-RIFIT Gaussian

Fig. 11: Nonzero blocks of the block-sparse Yukawa potential
matrix used for the bspmm benchmark (see text for details).

8/1024 16/2048 32/4096 64/8192 128/16384 256/32768
Number of Nodes / Number of Cores

10

100

20

30
40

60
80

200

300
400

Pe
rfo

rm
an

ce
 [T

F/
s]

DBCSR
TTG (MADNESS)
TTG (PaRSEC)

Fig. 12: Strong scaling of block-sparse GEMM.

atomic orbital basis for the main protease of the SARS-CoV-2
virus in complex with the N3 inhibitor [28] (total of 2,500
atoms; this size is representative of target problem sizes in
biomedical applications). The size of the matrix is 140,440;
rows/column panels corresponding to each of the 2,500 atoms
are grouped into tiles such that the size of each tile does not
exceed the target tile size of 256. Tiles of the matrix with the
per-element Frobenius norm of less than 10−8 are discarded.
We compute the square of the resulting block-sparse matrix A
(Figure 11) using the bspmm implementation.

We compare the TTG implementation with the Dis-
tributed Block Compressed Sparse Row library (DBCSR [30]).
DBCSR is part of the CP2K quantum chemistry and
solid state physics program package; it implements a 2.5D
communication-reducing SUMMA algorithm [36] and focuses
on block-sparse matrix-matrix multiplication of matrices with
a relatively large occupation.

Figure 12 shows the performance obtained for an increasing
number of nodes for the Yukawa potential matrix multiplica-
tion. From 8 to 128 nodes, DBCSR and both TTG backends all
exhibit very similar performance, with a linear strong scaling.
The TTG implementation with both backends stop scaling at
this size and for this matrix, while the DBCSR one continues.
The TTG implementation over the PaRSEC backend shows

a high variability at 128 nodes, with some runs significantly
slower than others, and a peak at the same speed as the TTG
implementation over the MADNESS backend and the DBCSR
one. We are investigating this instability, that we observe only
for the specific communication pattern for 128 nodes.

At 256 nodes, each process holds only a few tiles of the
product matrix, and communications become the dominant
factor of the execution. The 2.5D SUMMA algorithm [36]
implemented in DBCSR continues to scale due to its ability to
leverage greater cross-section bandwidth compared to the 2D
SUMMA variant that was implemented in TTG. We expect that
by converting the current 2D SUMMA TTG implementation
to 2.5D SUMMA we will be able to at least match the strong-
scaling performance of DBCSR.

E. Multi-Resolution Analysis (MRA)

This benchmark computes adaptively the order-10 mul-
tiwavelet [3], [4] representation of 3-D Gaussian functions
(exponent 30, 000) to precision of 10−8 with Gaussian centers
distributed randomly in a [−6, 6]3 volume. This random distri-
bution leads to substantial clustering and hence load imbalance
that is only partially addressed by overdecomposition using
a task ID map that randomly distributes function tree nodes
(and their children) across processes at some target level of
refinement. Empirically, the load imbalance is offset by the
reduction of communication.

The MRA computation on each function commences by
adaptively projecting into the multiwavelet basis by recurring
down until the local representation error is below the trunca-
tion threshold. The resulting data structure is a 3D spatial tree
that extends down about 6 levels of adaptive dyadic refinement.
Subsequently, the fast wavelet transform (compression) and
inverse transform (reconstruction) are performed and the norm
of the function is also computed for verification purposes.
Work and data flow down the tree in the projection and
reconstruction steps, and flows up the tree for compression.
In the compression operation, a parent node needs coefficients
from its 23 = 8 children. The code is templated by the number
of dimensions, making this a perfect use case of streaming
terminals so that a single terminal can process children in
arbitrary dimensions. Prior to streaming terminals, the ex-
ample had to employ complex C++ templates to manage a
variable and potentially large number of terminals. The native
MADNESS implementation computes on each tree in parallel,
but there is an explicit barrier after each computational step
(projection, compression, reconstruction, norm) as the in-
memory data structure is completed. In contrast, the TTG
implementation eliminates all inessential barriers and streams
data through the entire DAG and never stores an explicit
representation of all trees. The transition between algorithms
that ascend and descend implies that there is a moment for
each tree for which all data is stored (as arguments of pending
tasks), but computation on other trees proceeds independently
in the TTG implementation.

The streaming terminal feature is essential for expressing
the MRA numerical calculus algorithms, such as the compress

reduce_leaves_tt->template set_input_reducer<0>(
/* the reduction operator */
[](FunctionReconstructedNode<T,K,NDIM> &&a,

FunctionReconstructedNode<T,K,NDIM> &&b)
{
a.neighbor_coeffs[a.key.childindex()] = a.coeffs;
a.is_neighbor_leaf[a.key.childindex()] = a.is_leaf;
a.neighbor_sum[a.key.childindex()] = a.sum;
a.neighbor_coeffs[b.key.childindex()] = b.coeffs;
a.is_neighbor_leaf[b.key.childindex()] = b.is_leaf;
a.neighbor_sum[b.key.childindex()] = b.sum;
return a;

},
1 << NDIM /* the number of reductions to perform */

);

Listing 3: Accumulation of child nodes using a streaming
terminal on input terminal 0 of the reduce_leaves_tt task
template in the MRA benchmark.

(a) Strong scaling MRA: 4 to 32 nodes with 120 functions on
Seawulf , using 2 processes per node with 20 threads each.

(b) Strong scaling MRA: 8 to 64 nodes with 400 functions on
Hawk, using 8 processes per node with 16 threads each.

Fig. 13: Strong scaling MRA on Seawulf and Hawk.

operation, in a manner independent of the number of dimen-
sions d. Since the number of inputs to a compress task is 2d,
changing d would require changing the flowgraph. Listing 3
shows how streaming terminal can be used to implement
accumulation of the input node data sent to the compress task.
Each compress task expects exactly 2d inputs, hence the size
of the stream expected by the input terminal can be passed
directly to the set_input_reducer method.

Figures 13a and 13b show the results of strong-scaling MRA
using TTG and native MADNESS on Seawulf up to 32 nodes
and on Hawk up to 64 nodes. TTG over PaRSEC clearly
outperforms TTG over MADNESS and native MADNESS on
both machines. The benchmark uses plain-old-data (POD)
structures for node data and the performance of TTG over
MADNESS suffers due to data copies and high communication

overhead as compared to the efficient communication in TTG
over PaRSEC which avoids unnecessary copying of data. The
native MADNESS implementation scales up to 32 nodes on
both machines. However, it reaches the scalability limit due
to the existence of barriers at every step of the computation
and re-allocation of data. We are investigating methods for re-
ducing the communication overheads in TTG over MADNESS.

IV. RELATED WORK

With the increase in hierarchy and complexity of the under-
lying hardware, maintaining a potential for high performance
while abstracting the hardware to a simpler expression became
critical. The literature is not short of proposals addressing this
problem, including many evolutionary solutions that seek to
extend the capabilities of current message passing paradigms
with intra-node features (MPI+X). A different, more revolu-
tionary, solution extends the flowgraph programming concepts
as a substitute to both local and distributed data dependencies
and synchronization management.

a) Flowgraph Programming: Flowgraphs, while ubiqui-
tous as general models of computation (e.g., in compilers),
have recently become featured as first-class concepts in pro-
gramming models and languages aimed at high performance.
Control-flow graph models include Taskflow [24], CUDA
graphs [1]; TensorFlow [2] and Dask [33] APIs support
dataflow graphs; Intel TBB [29] includes support for both
control flow and dataflow graphs; CnC [11] and Legion [6]
can support control or dataflow graphs through data parti-
tioning and mapping. The most direct influence on TTG was
Parametrized Task Graph, a programming model supported by
PaRSEC in which computation is represented as flows of tuple-
indexed data through an operation graph. Almost all of these
programming models are implemented as C++ libraries. Most
implementations limit the support for flowgraphs to shared
memory setups, or use explicit communications transformed
in tasks to simulate the flowgraph in a distributed setting. The
Hume flowgraph DSL focuses on real-time embedded sys-
tems [20]. The S-NET DSL [19] is an orchestration language
of tasks, strictly decoupling implementation and parallelism.

b) Runtimes: Numerous efforts to provide a similar level
of abstraction via a fine-grain task-based dataflow program-
ming exist, adding to those that have transitioned from a grid-
based workflow toward a task-based environment. Some of
the recent task-based runtimes like Legion [6], StarPU [5],
HPX [22], CnC [11], OmpSs [17], DASH [34], PaRSEC [9]
and MADNESS [21] act as an intermediary between the hard-
ware resources and a programming paradigm, language or API
to isolate application developers from the underlying hardware.
Some of these programming interfaces have nascent support
for distributed execution, e.g., recent versions of the OpenMP
specification [32] introduce the task and depend clauses which
can be employed to express control flow graphs. OpenMP
is widely used and supports homogeneous, shared memory
systems, and its target extension to support accelerators is
quickly gaining traction. A limitation of the OpenMP model
is that distributed memory and inter-node communication need

to be explicitly implemented with the use of an external
communication library.

In OmpSs, tasks are discovered by a single thread and
executed by worker threads. The model allows nesting of tasks
in individual nodes to relieve the main thread; however it
may suffer from scalability issues on large scale distributed
systems.

HPX aims to overcome these challenges by replacing
explicit communications and synchronizations with asyn-
chronous communication between nodes and lightweight con-
trol objects, allowing applications to exploit fine-grained par-
allelism within the context of a global address space.

Legion, on the other hand, describes logical regions of data
and uses those regions to express the dataflow and depen-
dencies between tasks, and defers to its underlying runtime,
REALM [37], the scheduling of tasks, and data movement
across distributed heterogeneous nodes.

V. CONCLUSION

Template Task Graph is a new flowgraph programming
model that aims to lower the complexity of performance-
portable parallel programming of (especially, irregular) com-
plex applications by abstracting many details of the under-
lying task scheduling and execution as well as associated
data and resource management. In this paper, we presented
the current status of TTG’s C++ distributed-memory imple-
mentation using two task-based runtime systems (MADNESS
and PaRSEC). We evaluated these implementations over four
paradigmatic applications, ranging from the most regular and
compute intensive to applications whose execution is data
dependent and memory bound. These evaluations show high
performance and scalability, on par and sometimes exceeding
the performance of state of the art implementations in other
programming paradigms. We presented in details how the
features of the language are exploited by the implementations
to reduce memory copies and increase data management and
communication. It must also be noted that the development
cost, while a subjective measure, was certainly significantly
lower compared with the state-of-the-art applications, and
done by outsiders of the representative domain.

Future work will consider extensions to TTG to simplify
data injection in the DAG of tasks, to better manage memory
and network utilization, to provide some degree of Quality-
of-Service with regard to the computation and communication
scheduling, and to support heterogeneous platforms.

ACKNOWLEDGMENT

This research was supported partly by NSF awards
#1450300, #1450344 and #1450262, and by the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of
the U.S. Department of Energy Office of Science and the Na-
tional Nuclear Security Administration. We also acknowledge
Advanced Research Computing at Virginia Tech (www.arc.
vt.edu) for providing computational resources and technical
support that have contributed to the results reported within this

www.arc.vt.edu
www.arc.vt.edu

paper. We gratefully acknowledge the provision of computa-
tional resources by the High Performance Computing Center
(HLRS) at the University of Stuttgart, Germany.

REFERENCES

[1] CUDA programming guide - CUDA graphs. https://docs.nvidia.com/
cuda/cuda-c-programming-guide/index.html#cuda-graphs, 2021.

[2] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
et al. Tensorflow: A system for large-scale machine learning. In 12th
{USENIX} symposium on operating systems design and implementation
({OSDI} 16), pages 265–283, 2016.

[3] B. Alpert. Sparse Representation of Smooth Linear Operators. PhD
thesis, Yale University, 1990.

[4] B. Alpert, G. Beylkin, D. Gines, and L. Vozovoi. Adaptive Solution
of Partial Differential Equations in Multiwavelet Bases. Journal of
Computational Physics, 182(1):149–190, 2002.

[5] C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier. StarPU:
A unified platform for task scheduling on heterogeneous multicore
architectures. Conc. Comp. Pract. Exper., 23:187–198, 2011.

[6] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken.
Legion: Expressing locality and independence with logical regions. In
Supercomputing, 2012.

[7] Dan Bonachea and Paul H. Hargrove. GASNet-EX: A High-
Performance, Portable Communication Library for Exascale. 10 2018.

[8] G. Bosilca, R. J. Harrison, T. Herault, M. M. Javanmard, P. Nookala, and
E. F. Valeev. The Template Task Graph (TTG) - an emerging practical
dataflow programming paradigm for scientific simulation at extreme
scale. In IEEE/ACM 5th Intl. Wksp. on Extreme Scale Programming
Models and Middleware (ESPM2), pages 1–7, November 2020.

[9] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge,
Thomas Herault, and Jack Dongarra. PaRSEC: A programming
paradigm exploiting heterogeneity for enhancing scalability. Comp in
Sc. and Eng., 99:1, 2013.

[10] George Bosilca et al. Flexible Development of Dense Linear Algebra
Algorithms on Massively Parallel Architectures with DPLASMA. 2011
IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum, 2011.

[11] Zoran Budimlić and Kathleen Knobe. CnC: A Dependence Program-
ming Model. In Proceedings of the Sixth Workshop on Data-Flow
Execution Models for Extreme Scale Computing, DFM’16. ACM, 2016.

[12] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. A
class of parallel tiled linear algebra algorithms for multicore architec-
tures. Parallel Computing, 35(1):38 – 53, 2009.

[13] J Calvin and EF Valeev. TiledArray: A massively-parallel, block-sparse
tensor framework written in C++. https://github.com/ValeevGroup/
tiledarray, 2018.

[14] J. Choi, J. Dongarra, R. Pozo, and D. Walker. ScaLAPACK: a scalable
linear algebra library for distributed memory concurrent computers. In
The Fourth Symposium on the Frontiers of Massively Parallel Compu-
tation. IEEE Computer Society, oct 1992.

[15] Anthony Danalis, George Bosilca, Aurelien Bouteiller, Thomas Herault,
and Jack Dongarra. PTG: An abstraction for unhindered parallelism.
Proceedings of WOLFHPC’14, pages 21–30, 2014.

[16] H. Dang, R. Dathathri, G. Gill, A. Brooks, N. Dryden, A. Lenharth,
L. Hoang, K. Pingali, and M. Snir. A Lightweight Communication
Runtime for Distributed Graph Analytics. In 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2018.

[17] A. Duran, R. Ferrer, E. Ayguade, R. M. Badia, and J. Labarta. A Proposal
to Extend the OpenMP Tasking Model with Dependent Tasks. Intl.
Journal of Parallel Programming, 37(3):292–305, 2009.

[18] Mark Gates, Jakub Kurzak, Ali Charara, Asim YarKhan, and Jack
Dongarra. SLATE: Design of a Modern Distributed and Accelerated
Linear Algebra Library. In Supercomputing, SC ’19. Association for
Computing Machinery, 2019.

[19] Clemens Grelck, Jukka Julku, and Frank Penczek. Distributed S-
Net: Cluster and Grid Computing without the Hassle. In 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGrid 2012), 2012.

[20] Kevin Hammond and Greg Michaelson. Hume: A domain-specific
language for real-time embedded systems. In Proceedings of the
2nd International Conference on Generative Programming and Com-
ponent Engineering, GPCE ’03, page 37–56, Berlin, Heidelberg, 2003.
Springer-Verlag.

[21] Robert J. Harrison, Gregory Beylkin, Florian A. Bischoff, Justus A.
Calvin, George I. Fann, Jacob Fosso-Tande, Diego Galindo, Jeff R.
Hammond, Rebecca Hartman-Baker, Judith C. Hill, Jun Jia, Jakob S.
Kottmann, M.-J. Yvonne Ou, Laura E. Ratcliff, Matthew G. Reuter,
Adam C. Richie-Halford, Nichols A. Romero, Hideo Sekino, William A.
Shelton, Bryan E. Sundahl, W. Scott Thornton, Edward F. Valeev, Álvaro
Vázquez-Mayagoitia, Nicholas Vence, and Yukina Yokoi. MADNESS:
A multiresolution, adaptive numerical environment for scientific simu-
lation. SIAM J. Sci. Comput., 38(5):S123–S142, 2016.

[22] T. Heller, H. Kaiser, and K. Iglberger. Application of the ParalleX ex-
ecution model to stencil-based problems. Computer Science - Research
and Development, 28(2-3):253–261, 2013.

[23] Thomas Herault, Yves Robert, George Bosilca, Robert J. Harrison,
Cannada A. Lewis, Edward F. Valeev, and Jack J. Dongarra. Distributed-
memory multi-GPU block-sparse tensor contraction for electronic struc-
ture. In 35th IEEE International Parallel and Distributed Processing
Symposium IPDPS. IEEE, 2021.

[24] Tsung-Wei Huang, Dian-Lun Lin, Chun-Xun Lin, and Yibo Lin. Task-
flow: A Lightweight Parallel and Heterogeneous Task Graph Computing
System. IEEE TPDS, pages 1–1, 2021.

[25] Mohammad Mahdi Javanmard. Parametric Multi-Way Recursive Divide-
and-Conquer Algorithms for Dynamic Programs. PhD thesis, State
University of New York at Stony Brook, 2020.

[26] Mohammad Mahdi Javanmard, Zafar Ahmad, Martin Kong, Louis-
Noël Pouchet, Rezaul Chowdhury, and Robert Harrison. Deriving
parametric multi-way recursive divide-and-conquer dynamic program-
ming algorithms using polyhedral compilers. In Proceedings of the
18th ACM/IEEE International Symposium on Code Generation and
Optimization, pages 317–329, 2020.

[27] Mohammad Mahdi Javanmard, Pramod Ganapathi, Rathish Das, Zafar
Ahmad, Stephen Tschudi, and Rezaul Chowdhury. Toward efficient
architecture-independent algorithms for dynamic programs. In Inter-
national Conference on High Performance Computing. Springer, 2019.

[28] Zhenming Jin et al. Structure of Mpro from SARS-CoV-2 and discovery
of its inhibitors. Nature, 582(7811):289–293, June 2020.

[29] Alexey Kukanov and Michael J Voss. The foundations for scalable
multi-core software in intel threading building blocks. Intel Technology
Journal, 11(4), 2007.

[30] Alfio Lazzaro, Joost VandeVondele, Jürg Hutter, and Ole Schütt. In-
creasing the Efficiency of Sparse Matrix-Matrix Multiplication with a
2.5D Algorithm and One-Sided MPI. In Proceedings of the Platform
for Advanced Scientific Computing Conference, pages 1–9, Lugano
Switzerland, June 2017. ACM.

[31] Poornima Nookala, Zafar Ahmad, Mohammad Mahdi Javanmard, Martin
Kong, Rezaul Chowdhury, and Robert Harrison. Understanding Recur-
sive Divide-and-Conquer Dynamic Programs in Fork-Join and Data-
Flow Execution Models. In 2021 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pages 407–
416. IEEE, 2021.

[32] OpenMP Architecture Review Board. OpenMP Application Program-
ming Interface. Version 5.2. Technical report, November 2021.

[33] Matthew Rocklin. Dask: Parallel computation with blocked algorithms
and task scheduling. In Proceedings of the 14th python in science
conference, volume 130, page 136, 2015.

[34] Joseph Schuchart and José Gracia. Global Task Data-Dependencies
in PGAS Applications. In High Performance Computing. Springer
International Publishing, 2019.

[35] Joseph Schuchart, Christoph Niethammer, José Gracia, and George
Bosilca. Quo Vadis MPI RMA? Towards a More Efficient Use of MPI
One-Sided Communication, 2021.

[36] Edgar Solomonik and James Demmel. Communication-optimal par-
allel 2.5D matrix multiplication and LU factorization algorithms. In
Link.Springer.Com. 2011.

[37] Sean Jeffrey Treichler. Realm: Performance Portability through Com-
posable Asynchrony. PhD thesis, Stanford University, 2014.

[38] Unified Communication Framework Consortium. UCX: Unified Com-
munication X API Standard v1.6. Unified Communication Framework
Consortium, 2019.

[39] R. A. Van De Geijn and J. Watts. SUMMA: scalable universal matrix
multiplication algorithm. Concurrency: Practice and Experience, 9(4),
1997.

[40] Gayathri Venkataraman, Sartaj Sahni, and Srabani Mukhopadhyaya. A
blocked all-pairs shortest-paths algorithm. Journal of Experimental
Algorithmics (JEA), 8:2–2, 2003.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-graphs
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-graphs
https://github.com/ValeevGroup/tiledarray
https://github.com/ValeevGroup/tiledarray

	Introduction
	Template Task Graph
	Sending and Broadcasting
	Streaming Terminals
	Data serialization
	TTG Execution Backends

	Benchmarks
	Test Setup
	Dense Cholesky Factorization
	Node-scaling
	Problem-scaling

	Floyd-Warshall All-Pairs-Shortest Path (FW-APSP)
	Block-Sparse GEMM
	Multi-Resolution Analysis (MRA)

	Related Work
	Conclusion
	References

